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Sawyer Lift Sawyer Assembly
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Sawyer Push

Ours Ours (w/o initialization)

• Improves sample-efficiency for RL over pixels 
• Leverages past experiences of state-based agent 

and BC agent for efficient distillation
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Ours Ours (w/o BC smoothing)

Sawyer Assembly

• BC Smoothing: circumvents jittery motion-planner paths 
• Learning consistent motions, hard for RL agent without        

BC Smoothing

References

MoPA-RL Trajectories

MoPA-RL: State-based Agent Stage II: Vision-based Agent

Stage I: BC Trajectory Smoothing
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Stage 1 

• Collect transitions from our state-based agent 
MoPA-RL policy wth actions in the direct action 
space in a dataset. 

• Train a BC policy using the MoPA-RL dataset 
and collect BC-smoothed trajectories a 
separate replay buffer with optimal trajectories.

Stage 2 

• Train an asymmetric actor-critic agent, where the 
actor is learnt with image observations, and the 
critic using environment states.  

• Leverage prior experience collected by state-based 
agent and initialize critic weights with the MoPA-RL 
critic and actor with BC agent.
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Behavioral Cloning [2,3]:  

• Motion Planning -> Neural Motion Planning 

     Limited by the expert's performance 
(supervised learning)
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Learning from Demonstrations [4, 5]: 

• Separate replay buffer for expert 
demonstrations 

• Optimal trajectories -> guided exploration
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Manipulation tasks in obstructed environment(MoPA-RL [1]): 

Augments the action space of an RL agent with long-
horizon planning capabilities of motion planners. 

    Learn contact-rich manipulation skills using RL  	  
    Plan collision-free paths using motion planner  
    Depends on environment state 
    Computationally expensive motion planning
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Task: To solve manipulation tasks in obstructed environments by distilling a state-based 
policy into a visual policy, with high sample-efficiency and sim2sim transfer capabilities. 
Assumptions: The environment dynamics in our observation space are known during training. 
Idea: Distill a motion-planner augmented state-based policy into a visual policy removing 
dependency on motion-planner and environment state using: 

• BC Trajectory Smoothing: smooothing jittery motion planning trajectories for consistent paths 
• Weight Initialization: Leveraging past experiences, and improving the sample-efficiency 

when learning from pixels 
• Entropy coefficient tuning: Maintaining exploration v/s explitation tradeoff optimally

 MoPA-RL trajectory vs.  
BC smoothed trajectory

BackgroundApproach

Domain 
Randomization 
for sim-to-sim 

transfer

entropy temperature tuning
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Sawyer Push

log(α) : 0.5 log(α) : 0 log(α) : − 3 log(α) : − 40
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Entropy Temperature 

Sawyer AssemblySawyer Lift•  : Initialized to values lower 
than the final  of our state-
based agent.  

• Smaller  leverages prior 
experiences collected using 
MoPA-RL, improving smaple-
efficiency. 

α
α

α



log(α) : 0.5

log(α) : 0

log(α) : − 3

log(α) : − 40

log(α) : 0.5 log(α) : 0 log(α) : − 3 log(α) : − 40

BC Agent

Actor

Vision-based 
Agent

Actor

Critic

MoPA-RL

Critic

BC Agent

Actor

��� ��� ��� ��� ���
(QYLURQPHQW�VWHSV�����0�

���

���

���

���

���

���

$Y
HUD
JH
�6X
FFH

VV�
5D
WH

Sawyer Push

Av
er

ag
e 

Su
cc

es
s 

Ra
te

Environment steps (1.2M)
0.0 0.3 0.6 0.9 1.2

0.0

0.2

0.4

0.6

0.8

1.0

log(α) : 0.5

log(α) : 0

log(α) : − 3

log(α) : − 40


